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Abstract. We have analysed the classical r-matrix stmcture of a new integrable model in 
two-dimensional coupled Liouville-Thirring model. Due to the non-ultralocal character of 
the system, a new Corm of ( r ,  -s) structure is obtained. It is also proved that the integrability 
of the model is not destroyed if non-trivial finite boundary conditions are imposed. An 
equation determining the form of the matrices K, and K. is deduced which is a simple 
generalization of that of Sklyanin for the ultralocal case. 

1. lntroduction 

The integrability of two-dimensional nonlinear systems and its relation with the exist- 
ence of the ‘elassical u-matrix’ have been investigated over a long period of time [ 1,2]. 
The situation of an ultralocal nonlinear system is now well understood, but unfortun- 
ately a majority of the systems turu out to be non-ultralocal. In this respect some work 
has already been done [3] which shows that a modified form of r-matrix structure exists 
in such cases; this was called ‘14 structure. Some attempts have already been made 
regarding the quantization of such systems [4]. Of late, new classes of non-ultralocal 
systems have been analysed from which further clues regarding the modified ‘4 struc- 
ture have been obtained. On the other hand, an important issue in this respect is the 
imposition of non-trivial boundary conditions at finite distances [ 5 ] .  The preservation 
of the integrability requires that some special conditions are to be obeyed, even for the 
ultralocal systems [ 6 ] .  Here, in this paper, we analyse a new integrable system called 
the Liouville-Thirring model in the light of classical r-s structure with finite boundary 
condition [7].  We observe that the non-ultralocality of the model gives rise to a new 
form of ‘r-s’ matrix. Furthermore, the rational nature of the r-matrix leads to a new 
type of equation for the determination of boundary matrix Kt(2.). The involution 
character of the conservation laws is also discussed. 

2. Formulation 

The classical Liouville-Thirring model is given as; 

a’@= -Uz exp(@) ~ $ Y = ~ J Y  exp(Q) 
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where a= y"ae , J''='?yI,V, Y =Y'yo, J z =  JJ", Y = y'Y. Such a model was first 
studied in (81. The Lax operator pertaining to equation (1) can be written as 
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where 

P(X) = - ~ t ( x ) a l ( x )  +$(#'(x) + + ) )  
r (x)  = -pz(x) e+(x) + a: (x )  +p,(x)a:(x) -S.al(x)(# '(x)+ n(x))  

q (x )=-pdx) .  
(3) 

Here primes denote differentiation with respect to the space variable x, and n(x)  is the 
field momentum corresponding to the field #; n(x) = a,#, and the following substitution 
has been used; Y , = m e x p [ - ( - l ) ' a , ( r ,  x)]. The canonical Poisson brackets are 

Using equations (3) and (4) we can calculate the Poisson brackets between the elements 
of L, 

Now, a simple computation leads to 

with 

,.(&p)=B (a+P) l (a -P)P s (&P)= im-u  (7) 

where P is the permutation matrix. Here 9 denotes the Poisson bracket between the 
elements of L. Now to pass over to lhe case of transition matrix T, we should remember 
that in the case of non-ultralocal systems one should be careful about the nature of 
end-points occurring in the definition of T and the end-points in the expression of 
{TTT) should not coincide. Now the transition matrix is defined as the solution of 
the equation 

Y, = L(X,  a)Y ('3) 
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in an interval u < x < b  of the x-axis with suitable conditions. It may also be defined as 
the parallel transport operator from y to x along the x-axis (at fixed time t): 

It satis6es 

along with the initial condition T(x,  x ,  A)=I. 
An important property of T that will be useful in the following is 

(11) 
T(X, Y ,  w ( y ,  2, a) = r ( x ,  z, a) 
T(X, Y ,  a)-' = T(Y,  x ,  a). 

Moreover, under standard boundary conditions on the fields at spatial infinity, 

T(A)= lim T(x, y ,  A) 
x-+m 
p - m  

exists and is called the monodromy matrix. If T(x, y, A) denotes such a transition 
matrix, then it can be shown that 
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Considering the ~ ' ( z - w )  part, let 
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Using equation ( I O )  one can rewrite the integrand of the last term as follows: 

= -jnr’dw ~ ( s - y ) ~ ( u - ~ ) ~ ( w , x , y ) ~ ( o , ~ ,  U) 

x (T(x, W, n)or(u, w , P ) ) [ ~ + s ,  L(W,  a )o I+mm,p) i  
x (no, Y ,  w” U, P N  

a 
am 

=jD”dw ~ ( x - y ) ~ ( u - v ) ~ ( w ; x , y ) ~ ( o , u , ~ ) -  

Integrating by parts, 
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It is inlercsting lo note that lhe matrix 'S' is independent of (A,  p ) ,  and I' is a function 
of (A, p )  which depends on both A+p and A - p ,  but has the same simple pole structure 
as in the ultralocal case. 

In accordance with our previous observation, we have kept the points (U, U) and 
( x , y )  all different. If we now assume that they are ordered in a specific way, then 
equation (23) leads to: 
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(i) u<y<x<u,then 

{T(x .  Y, A)FTCu, U, P)I = E(u--u)x(o; U, V(X, w, a)@?"@, w, p)(r-S) 

x T(W, a)ow,Y,p)iz; (24) 

(ii) J"v<u<x,  then 

{w,Y, w p - c u ,  U, P H  = E ( ~ - Y M ~ ;  x , Y ) ( T ( ~ ,  W ,  n)sr(u, CO, m r + s )  
x (T(o,Y, a w ( W ,  U,P))IIZ:. (25) 

If in equations (24) and (25) we now take the limit u+x, u+y, then we get respectively 

(26) 

(27) 

So, as per the prescription of reference [3], we take the average of (16) and (17) to 
finally obtain, 

(28) 

so that the monodromy matrix obcys the same Poisson bracket algebra as in the ultra- 
local case. 

m x ,  Y, y m x ,  Y, = [ r -  s, T(X,  Y ,  a m m ,  Y ,  P)I 

~ X J ,  a)qm9Y, P I }  = ws, w, Y ,  a)w(x,Y,  PN. 

I w, Y, a)? T(X ,  Y ,  P H  = P, w, a m  n x ,  y, 1r)1 

3. Finite boundary condition 

Of late, several attempts have been made to impose non-trivial finite bmndary condi- 
tions on integrable system without destroying the property of integrability. A unique 
prescription was given by Sklyanin for the case of the usual antisymmetric r-matrix of 
the ultralocal case. For the ultralocal integrable system Sklyanin has shown that explicit 
boundary conditions of the Dirichlet or Neumann type can be imposed on the nonlinear 
fields through the explicit use of the space and time part of the Lax operator. On the 
other hand, since the quantum inverse scattering can be connected with the scattering 
matrix, it has been shown by Cherednik [9) that such boundary conditions in the space 
variables can be thought of as scattering from a fixed wall at the end of the axis. It 
was also demonstrated that in the general case it is best introduced through a re- 
definition of the transition matrix, as follows. Here we show that it is possible to deduce 
a general condition on the boundary matrices &(A), even for our non-ultralocal case 
with 'r-s' structure. Let us denote by F(x, y, A) the matrix 

F(X,Y,~)=T(X,Y,~)K-(~)Z)T-'(X,I.,~-') (29) 
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and compute the Poisson bracket between two F's: 

Now, to prove that we still have an infinite number of commuting conserved quantities 
we set 

G(X. Y ,  a) = F(X,  Y ,  aw+(a) (35) 



4. Explicit form of &(A) and conserved quantities 

After the preceding general study we now proceed to give the explicit form of the 
boundary matrices and some conserved quantities. Assuming, as in [6 ] ,  that the K, are 
diagonal, equation (34) leads to the following, with the I' and s matrices as given 
in [7]. 

which can be solved for Kv. 
On the other hand, the Lax equation 

Qx - LCD 
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where @= &)' and L is given by (Z), can be converted to the Ricatti form 

with 
6 F Q, e-iAY 

Substituting a Laurent expansion of 6, 

On the other hand, the conserved functional a(A) is given by 

whence we get 

m 

Cl = - q(z ) r ( i )  dz 
J-m 

m .=-J ( 2 P q r + q r m  dz 
-m 

etc. Using the basic Poisson brackets given in equalion (S), we immediately find that 

{CO, G ) = O  {CO, G } = O  {CO, C3}=0 

and in general 

{Cf, C,}=O. 

5. Discussion 

(47) 

In the above analysis we have discussed some important properties of a new integrable 
model in two dimension which is non-ultralocal and its Poisson structure gives rise to 
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(r, -s) matrix. I t  may be noted that the ‘s’ part is constant but the ‘r‘ part is a rational 
Function of the spectral parameter, with a simple pole structure, as in the ultralocal 
case. It is proved that even in such a situation one can impose non-trivial boundary 
conditions at finite distances and preserve integrability. 
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